3,877 research outputs found

    Evolution of swelling pressure of cohesive-frictional, rough and elasto-plastic granulates

    Get PDF
    The subject of this study is the modeling of the evolution of the swell-ing pressure of granulates with cohesive-frictional, rough and elasto-plastic “mi-croscopic” contact properties. The spherical particles are randomly arranged in a periodic cubic space with a fixed volume so that an increase of the particle size – i.e. swelling that can be caused by intake of some fluid – is accompanied by a de-crease of the void space. An analytical function is proposed that properly de-scribes the (macroscopic) void ratio as function of pressure for different micro-scopic contact properties

    SimInf: An R package for Data-driven Stochastic Disease Spread Simulations

    Get PDF
    We present the R package SimInf which provides an efficient and very flexible framework to conduct data-driven epidemiological modeling in realistic large scale disease spread simulations. The framework integrates infection dynamics in subpopulations as continuous-time Markov chains using the Gillespie stochastic simulation algorithm and incorporates available data such as births, deaths and movements as scheduled events at predefined time-points. Using C code for the numerical solvers and OpenMP to divide work over multiple processors ensures high performance when simulating a sample outcome. One of our design goal was to make SimInf extendable and enable usage of the numerical solvers from other R extension packages in order to facilitate complex epidemiological research. In this paper, we provide a technical description of the framework and demonstrate its use on some basic examples. We also discuss how to specify and extend the framework with user-defined models.Comment: The manual has been updated to the latest version of SimInf (v6.0.0). 41 pages, 16 figure

    Learning stable and predictive structures in kinetic systems: Benefits of a causal approach

    Get PDF
    Learning kinetic systems from data is one of the core challenges in many fields. Identifying stable models is essential for the generalization capabilities of data-driven inference. We introduce a computationally efficient framework, called CausalKinetiX, that identifies structure from discrete time, noisy observations, generated from heterogeneous experiments. The algorithm assumes the existence of an underlying, invariant kinetic model, a key criterion for reproducible research. Results on both simulated and real-world examples suggest that learning the structure of kinetic systems benefits from a causal perspective. The identified variables and models allow for a concise description of the dynamics across multiple experimental settings and can be used for prediction in unseen experiments. We observe significant improvements compared to well established approaches focusing solely on predictive performance, especially for out-of-sample generalization
    • …
    corecore